Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612999

RESUMO

Atractylodes macrocephala Koidz (AMK) is a traditional herbal medicine used for thousands of years in East Asia to improve a variety of illnesses and conditions, including cancers. This study explored the effect of AMK extract on apoptosis and tumor-grafted mice using AGS human gastric adenocarcinoma cells. We investigated the compounds, target genes, and associated diseases of AMK using the Traditional Chinese Medical Systems Pharmacy (TCMSP) database platform. Cell viability assay, cell cycle and mitochondrial depolarization analysis, caspase activity assay, reactive oxygen species (ROS) assay, and wound healing and spheroid formation assay were used to investigate the anti-cancer effects of AMK extract on AGS cells. Also, in vivo studies were conducted using subcutaneous xenografts. AMK extract reduced the viability of AGS cells and increased the sub-G1 cell fraction and the mitochondrial membrane potential. Also, AMK extract increased the production of ROS. AMK extract induced the increased caspase activities and modulated the mitogen-activated protein kinases (MAPK). In addition, AMK extract effectively inhibited AGS cell migration and led to a notable reduction in the growth of AGS spheroids. Moreover, AMK extract hindered the growth of AGS xenograft tumors in NSG mice. Our results suggest that AMK has anti-cancer effects by promoting cell cycle arrest and inhibiting the proliferation of AGS cancer cells and a xenograft model through apoptosis. This study could provide a novel approach to treat gastric cancer.


Assuntos
Atractylodes , Neoplasias Gástricas , Humanos , Animais , Camundongos , Neoplasias Gástricas/tratamento farmacológico , Espécies Reativas de Oxigênio , Caspases , Extratos Vegetais/farmacologia
2.
Int J Med Sci ; 20(8): 1000-1008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484801

RESUMO

In traditional Korean medicine, the 16-herb concoction Bojanggunbi-tang (BGT) is used to treat various gastrointestinal (GI) diseases. In this study, we investigated the regulatory mechanism underlying the influence of BGT on the interstitial cells of Cajal (ICCs), pacemaker cells in the GI tract. Within 12 h of culturing ICCs in the small intestines of mice, the pacemaker potential of ICCs was recorded through an electrophysiological method. An increase in the BGT concentration induced depolarization and decreased firing frequency. This reaction was suppressed by cholinergic receptor muscarinic 3 (CHRM3) antagonists, as well as 5-hydroxytryptamine receptor (5HTR) 3 and 4 antagonists. Nonselective cation channel inhibitors, such as thapsigargin and flufenamic acid, along with protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) inhibitors, also suppressed the BGT reaction. Guanylate cyclase and protein kinase G (PKG) antagonists inhibited BGT, but adenylate cyclase and protein kinase A antagonists had no effect. In conclusion, we demonstrated that BGT acts through CHRM3, 5HTR3, and 5HTR4 to regulate intracellular Ca2+ concentrations and the PKC, MAPK, guanylate cycle, and PKG signaling pathways.


Assuntos
Células Intersticiais de Cajal , Animais , Camundongos , Potenciais da Membrana , Células Intersticiais de Cajal/metabolismo , Transdução de Sinais , Intestino Delgado/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Colinérgicos/metabolismo , Colinérgicos/farmacologia , Camundongos Endogâmicos BALB C , Células Cultivadas
3.
Nutrients ; 15(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37375548

RESUMO

For centuries, Foeniculi fructus (F. fructus) has been used as a traditional herbal medicine in China and Europe and is widely used as a natural therapy for digestive disorders, including indigestion, flatulence, and bloating. The mechanism of F. fructus that alleviates functional dyspepsia was analyzed through network pharmacology, and its therapeutic effect on an animal model of functional dyspepsia were investigated. The traditional Chinese medicine systems pharmacology (TCMSP) database was used to investigate the compounds, targets, and associated diseases of F. fructus. Information on the target genes was classified using the UniProtdatabase. Using the Cytoscape 3.9.1 software, a network was constructed, and the Cytoscape string application was employed to examine genes associated with functional dyspepsia. The efficacy of F. fructus on functional dyspepsia was confirmed by treatment with its extract in a mouse model of loperamide-induced functional dyspepsia. Seven compounds targeted twelve functional dyspepsia-associated genes. When compared to the control group, F. fructus exhibited significant suppression of symptoms in a mouse model of functional dyspepsia. The results of our animal studies indicated a close association between the mechanism of action of F. fructus and gastrointestinal motility. Based on animal experimental results, the results showed that F. fructus provided a potential means to treat functional dyspepsia, suggesting that its medical mechanism for functional dyspepsia could be described by the relationship between seven key compounds of F. fructus, including oleic acid, ß-sitosterol, and 12 functional dyspepsia-related genes.


Assuntos
Medicamentos de Ervas Chinesas , Dispepsia , Animais , Camundongos , Dispepsia/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Farmacologia em Rede , Medicina Tradicional Chinesa , Modelos Animais de Doenças , Simulação de Acoplamento Molecular
4.
Plants (Basel) ; 12(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37050134

RESUMO

Gastrointestinal motility disorder (GMD) is a disease that causes digestive problems due to inhibition of the movement of the gastrointestinal tract and is one of the diseases that reduce the quality of life of modern people. Smilacis Glabrae Rhixoma (SGR) is a traditional herbal medicine for many diseases and is sometimes prescribed to improve digestion. As a network pharmacological approach, we searched the TCMSP database for SGR, reviewed its constituents and target genes, and analyzed its relevance to gastrointestinal motility disorder. The effects of the SGR extract on the pacemaker activity in interstitial cells of Cajal (ICC) and gastric emptying were investigated. In addition, using the GMD mouse model through acetic acid (AA), we investigated the locomotor effect of SGR on the intestinal transit rate (ITR). As a result of network pharmacology analysis, 56 compounds out of 74 candidate compounds of SGR have targets, the number of targets is 390 targets, and there are 904 combinations. Seventeen compounds of SGR were related to GMD, and as a result of comparing the related genes with the GMD-related genes, 17 genes (active only) corresponded to both. When looking at the relationship network between GMD and SGR, it was confirmed that quercetin, resveratrol, SCN5A, TNF, and FOS were most closely related to GMD. In addition, the SGR extract regulated the pacemaker activity in ICC and recovered the delayed gastric emptying. As a result of feeding the SGR extract to AA-induced GMD mice, it was confirmed that the ITR decreased by AA was restored by the SGR extract. Through network pharmacology, it was confirmed that quercetin, resveratrol, SCN5A, TNF, and FOS were related to GMD in SGR, and these were closely related to intestinal motility. Based on these results, it is suggested that SGR in GMD restores digestion through the recovery of intestinal motility.

5.
J Ethnopharmacol ; 312: 116499, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37059250

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The cause of irritable bowel syndrome (IBS), a functional gastrointestinal (GI) disorder, remains unclear. Banhasasim-tang (BHSST), a traditional herbal medicines mixture, mainly used to treat GI-related diseases, may have a potential in IBS treatment. IBS is characterized by abdominal pain as the main clinical symptom, which seriously affects the quality of life. AIM OF THE STUDY: We conducted a study to evaluate the effectiveness of BHSST and its mechanisms of action in treating IBS. MATERIALS AND METHODS: We evaluated the efficacy of BHSST in a zymosan-induced diarrhea-predominant animal model of IBS. Electrophysiological methods were used to confirm modulation of transient receptor potential (TRP) and voltage-gated Na+ (NaV) ion channels, which are associated mechanisms of action. RESULTS: Oral administration of BHSST decreased colon length, increased stool scores, and increased colon weight. Weight loss was also minimized without affecting food intake. In mice administered with BHSST, the mucosal thickness was suppressed, making it similar to that of normal mice, and the degree of tumor necrosis factor-α was severely reduced. These effects were similar to those of the anti-inflammatory drug-sulfasalazine-and antidepressant-amitriptyline. Moreover, pain-related behaviors were substantially reduced. Additionally, BHSST inhibited TRPA1, NaV1.5, and NaV1.7 ion channels associated with IBS-mediated visceral hypersensitivity. CONCLUSIONS: In summary, the findings suggest that BHSST has potential beneficial effects on IBS and diarrhea through the modulation of ion channels.


Assuntos
Síndrome do Intestino Irritável , Plantas Medicinais , Camundongos , Animais , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/induzido quimicamente , Qualidade de Vida , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Canal de Cátion TRPA1
6.
Int J Med Sci ; 19(13): 1824-1834, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438925

RESUMO

Herbal medicines have traditionally been used as an effective digestive medicine. However, compared to the effectiveness of Herbal medicines, the treatment mechanism has not been fully identified. To solve this problem, a system-level treatment mechanism of Jakyakgamcho-Tang (JGT), which is used for the treatment of functional dyspepsia (FD), was identified through a network pharmacology study. The two components, paeoniae radix alba and licorice constituting JGT were analyzed based on broad information on chemical and pharmacological properties, confirming 84 active chemical compounds and 84 FD-related targets. The JGT target confirmed the relationship with the regulation of various biological movements as follows: cellular behaviors of muscle and cytokine, calcium ion concentration and homeostasis, calcium- and cytokine-mediated signalings, drug, inflammatory response, neuronal cells, oxidative stress and response to chemical. And the target is enriched in variety FD-related signaling as follows: MAPK, Toll-like receptor, NOD-like receptor, PI3K-Akt, Apoptosis and TNF signaling pathway. These data give a new approach to identifying the molecular mechanisms underlying the digestive effect of JGT.


Assuntos
Medicamentos de Ervas Chinesas , Dispepsia , Plantas Medicinais , Dispepsia/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Farmacologia em Rede , Cálcio , Fosfatidilinositol 3-Quinases/genética , Plantas Medicinais/química , Citocinas
7.
Int J Med Sci ; 19(7): 1093-1102, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35919815

RESUMO

The anti-cancer effects of [6]-gingerol ([6]-GIN), the main active polyphenol of ginger (Zingiber officinale), were investigated in the human bladder cancer cell line 5637. [6]-GIN inhibited cell proliferation, increased sub­G1 phase ratios, and depolarized mitochondrial membrane potential. [6]-GIN-induced cell death was associated with the downregulation of B­cell lymphoma 2 (BCL­2) and survivin and the upregulation of Bcl­2­associated X protein (Bax). [6]-GIN activated caspase­3 and caspase-9 and regulated the activation of mitogen-activated protein kinases (MAPKs). Further, [6]-GIN also increased the intracellular reactive oxygen species (ROS) levels and TG100-115 or tranilast increased [6]-GIN­induced cell death. These results suggest that [6]-GIN induced apoptosis in the bladder cancer cell line 5637 and therefore has the potential to be used in the development of new drugs for bladder cancer treatment.


Assuntos
Neoplasias da Bexiga Urinária , Apoptose , Catecóis , Linhagem Celular Tumoral , Álcoois Graxos , Humanos , Potencial da Membrana Mitocondrial , Espécies Reativas de Oxigênio/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico
8.
Int J Med Sci ; 19(5): 941-951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693751

RESUMO

Grape seed is an important natural bioactive product with various health benefits. Interstitial cells of Cajal (ICCs) are pacemaker cells in the gastrointestinal (GI) tract. The present study investigated the effects of grape seed powder (GSP) on ICC properties and GI motility. GSP depolarized the pacemaker potentials of ICCs in a dose­dependent manner. Y25130 or SB269970 slightly inhibited GSP­induced effects. However, Y25130 and SB269970 together completely blocked GSP-induced effects. In the presence of inhibitors of protein kinase C, protein kinase A, or mitogen-activated protein kinase, GSP­induced ICC depolarization was inhibited. GSP increased the intestinal transit rate in normal mice and in mice with acetic acid-induced GI motility disorder. In addition, the levels of motilin and substance P were elevated after GSP dosing. These results demonstrate that GSP can regulate GI motility, and therefore, it is a potential therapeutic agent for treating GI motility disorders.


Assuntos
Vitis , Animais , Motilidade Gastrointestinal , Intestino Delgado , Potenciais da Membrana , Camundongos , Técnicas de Patch-Clamp , Pós/farmacologia , Sementes
9.
Plants (Basel) ; 11(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35631773

RESUMO

Pinellia ternata Breitenbach (PTB) is a widely used herbal medicine in China, Japan, and South Korea. It has antiemetic, anti-inflammatory, antitussive, and sedative properties. The raw material is toxic, but can be made safer using alum solution or by boiling it for a long time. In addition, PTB seems to be effective for gastrointestinal motility disorders (GMDs), but this is yet to be conclusively proven. Herein, PTB compounds, targets, and related diseases were investigated using the traditional Chinese medical systems pharmacology database and an analysis platform. Information on target genes was confirmed using the UniProt database. Using Cytoscape 3.8.2, a network was established and GMD-related genes were searched using the Cytoscape stringApp. The effects of the PTB extract on the pacemaker potential of interstitial cells of Cajal and GMD mouse models were investigated. In total, 12 compounds were found to target 13 GMD-related genes. In animal experiments, PTB was found to better regulate pacemaker potential in vitro and inhibit GMD signs compared to control groups in vivo. Animal studies showed that the mechanism underlying the effects of PTB is closely related to gastrointestinal motility. The results obtained demonstrated that PTB offers a potential means to treat GMDs, and we suggested that the medicinal mechanism of GMDs can be explained by the relationship between 12 major components of PTB, including oleic acid, and 13 GMD-related genes.

10.
Anim Cells Syst (Seoul) ; 26(1): 37-44, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308125

RESUMO

Black garlic (BG) is a newly explored food stuff obtained via fermentation of raw, healthy garlic, especially in Asian countries. Interstitial cells of Cajal (ICC) are the pacemaker cells of gastrointestinal (GI) motility. The purpose of this study was to investigate the effects of BG extract on the pacemaker potentials of the ICC in the small intestines of mice and the possibility of controlling GI motility. The antioxidant activity of BG extract was also investigated. The whole-cell electrophysiological method was used to measure pacemaker potentials of the ICC in vitro, whereas GI motility was measured using the intestinal transit rate (ITR) in vivo. BG extract depolarized the pacemaker potentials of the ICC. Y25130 and RS39604 5-HT receptor antagonists could not inhibit the effect of BG extract on the pacemaker potentials of the ICC, whereas the 5-HT receptor antagonist SB269970 could. Pre-treatment with external Na+ (5 mM) or Ca2+-free solution inhibited the BG extract-induced depolarization of the ICC. With SB203580, PD98059, or c-jun NH2-terminal kinase II inhibitor pre-treatment, BG extract did not induce pacemaker potential depolarization. Moreover, the ITR values were increased by BG extract. Elevation of the ITR due to BG extract was related with increased protein expression of the 5-HT7 receptors. In addition, BG extract showed antioxidant activity. Collectively, these results highlight the ability of BG extract to regulate GI motility and the possibility of using it to develop GI motility modulators in the future. Moreover, BG showed immense potential as an antioxidant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...